The forgotten practicalities of machine learning: **Dirty Data**

Gaël Varoquaux (nrin-

About me

I spent > 15 years data processing for science and applications

- ■PhD in physics
- ■Brain imaging, medical imaging, cognitive neuroscience
- Current focus: machine learning & health
- ■Co-founded scikit-learn

Dirty Data is the number one roadblock to data science

From "big" data to "dirty" data

- Plenty of data is needed
 - AI models are data hungry
 - for generalizable findings
- Increasing quantity degrades quality:
 - aggregation across multiple sources
 - opportunistic collection (not the right information)

a varoquaux

From "big" data to "dirty" data

- Plenty of data is needed
 - AI models are data hungry
 - for generalizable findings
- Increasing quantity degrades quality:
 - aggregation across multiple sources
 - opportunistic collection (not the right information)

How to analyze the resulting mess?

Typical answer: curate it

Carefully create "cleaner" representations, easier to model

Dirtiness that breaks our toolbox

Machine learning Let $\mathbf{X} \in \mathbb{R}^{n \times p}$

Real-life data science

Gender	Experience	Age	Employee Position Title
М	10 yrs	42	Master Police Officer
F	23 yrs	NA	Social Worker IV
Μ	3 yrs	28	Police Officer III
F	16 yrs	45	Police Aide
Μ	13 yrs	48	Electrician I
М	6 yrs	36	Bus Operator
Μ	NA	62	Bus Operator
F	9 yrs	35	Social Worker III
F	NA	39	Library Assistant II
М	8 yrs	NA	Library Assistant I

Dirtiness that breaks our toolbox

Machine learning Let $\mathbf{X} \in \mathbb{R}^{n \times p}$

Real-life data science

Gender	Experience	Age	Employee Position Title
М	10 yrs	42	Master Police Officer
F	23 yrs	NA	Social Worker IV
М	3 yrs	28	Police Officer III
F	16 vrs	/.5	Police Aide
M	Dirty Categ	ories	/Entities ② ctrician I
М	6 yrs	36	Bus Operator
М	NA	62	Bus Operator
F	9 yrs	35	Social Worker III
F	NA	39	Library Assistant II
М	8 yrs	NA	Library Assistant I

Dirtiness that breaks our toolbox

Machine learning Let $\mathbf{X} \in \mathbb{R}^{n \times p}$

Real-life data science

Experience	Age	Employe	e Position Title
10 yrs	42	Maste	r Police Officer
23 yrs	NA	S	ocial Worker IV
3 yrs	28	F	Police Officer III
16 vrs	45		Police Aide
Missir	ıg val	ues 🙁	Electrician I
6 yrs	36		Bus Operator
NA	62		Bus Operator
9 yrs	35	S	ocial Worker III
NA	39	Libr	ary Assistant II
8 yrs	NA	Lib	rary Assistant I
	10 yrs 23 yrs 3 yrs 16 yrs Missir 6 yrs NA 9 yrs	10 yrs 42 23 yrs NA 3 yrs 28 16 yrs 45 Missing val 6 yrs 36 NA 62 9 yrs 35 NA 39	10 yrs 42 Master 23 yrs NA S 3 yrs 28 F 16 yrs 45 Missing values © 6 yrs 36 NA 62 9 yrs 35 So NA 39 Libr

Tabular data = columns have different meanings (age, sex, glucose)

Tree-based models are best

Settings: supervised learning as statistical modeling

■ Given n pairs $(x,y) \in \mathcal{X} \times \mathcal{Y}$ drawn <u>i.i.d.</u> find a function $f: \mathcal{X} \to \mathcal{Y}$ such that $f(x) \approx y$

Notation: $\hat{y} \stackrel{\text{def}}{=} f(x)$

Empirical risk minimization

■ Loss function $l: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$

■ Estimation of
$$f$$
: $f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathbb{E}[l(\hat{y}, y)]$

For *l*: quadratic loss, $f^*(x) = \mathbb{E}[y|x]$

6 Varoquaux

Settings: supervised learning as statistical modeling

■ Given n pairs $(x,y) \in \mathcal{X} \times \mathcal{Y}$ drawn <u>i.i.d.</u> find a function $f: \mathcal{X} \to \mathcal{Y}$ such that $f(x) \approx y$

Notation: $\hat{y} \stackrel{\text{def}}{=} f(x)$

Empirical risk minimization

- Loss function $l: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$
- Estimation of f: $f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathbb{E}[l(\hat{y}, y)]$

In practice, Ê not E

 \Rightarrow good choice of function class ${\mathcal F}$ (inductive bias, restricting model fit)

+ not an actual argmin (regularization, dropout, penalties...)

Varoquaux

Course outline

1 Non-normalized discrete entities / categories

Entities: more learning, rather than more cleaning Dirty categories from strings

2 Missing values

The classical missing-values framework Rethinking imputation for prediction Architectures for missing values

1 Non-normalized discrete entities /

categories			
J	Gender	Experience	Employee Position Title
	М	10 yrs	Master Police Officer
	F	23 yrs	Social Worker IV
	М	3 yrs	Police Officer III
	F	16 yrs	Police Aide
	М	13 yrs	Electrician I
		-	D 0 .

F	23 yrs	Social Worker IV
М	3 yrs	Police Officer III
F	16 yrs	Police Aide
М	13 yrs	Electrician I
М	6 yrs	Bus Operator
M	29 yrs	Bus Operator
F	9 yrs	Social Worker III
F	6 yrs	Library Assistant II
М	8 yrs	Library Assistant I

- A. Cvetkov-Iliev

With

- P. Cerda

1 Non-normalized discrete entities / categories
Entities: more learning, rather than more cleaning
Dirty categories from strings

Example study: salaries across institutions

GOVERNMENT SALARIES EXPLORER

This database of compensation for Texas state employees is published by The Texas Tribune

117 AGENCIES

138,460 GOVERNM

\$45,800 ME SAI

MEDIAN

https://salaries.texastribune.org

Questions of interest

- How does experience impact salary for managers vs assistants?
- ■What is the typical pay gap between sexes?

Example study: an entity-matching challenge

Analysis across institutions

Job Title	Expe	erience Salary	Job Title	Expe	rience Salary
0712 - postdoctoral	1	65k	professor	5	72k
fellow data scientist	3	400	sr research assoc	4	100k
senior research associati	5	110k	postdoctoral re- search associate	2	49k

Example study: salary function of experience & position

All the instances of "project manager" in the data

30

Example study: salary function of experience & position

All the entries matched to "project manager" in the data

Manual entity matching using openrefine 3 days work, 1000 matchs

Example study: salary function of experience & position

Estimates of E[Salary|Job, Experience]

- Word embeddings of entries (fasttext)
- Machine learning to target Salary = f(Job, experience)

Compare pay of women vs men all other things kept constant

Machine-learning estimation:

Predict the counterfactual: salary of a woman, had she been a man

Doubly-robust causal inference

- E[Salary | Sex, Job, Experience...]
- P[Sex | Job, Experience...]

Consistency of results when matching men to women within vs across institutions

Example study: which approach is most valid

Cross-validation to measure quality of estimates

Estimation method				Propensity (Brier score)
Matching & averaging	Yes	55634	31802	0.231
Embedding & Learning	No	52683	28726	0.189
Embedding & Learning	Yes	50614	26713	0.184

Lower is better

- ⇒ Both cleaning & learning help
 - But only learning is better than only cleaning
 - Cleaning is 3 days manual labor 🙁

More learning, rather than more cleaning

■ Non-parametric flexible models capture errors better than cleaning [Cvetkov-Iliev... 2022]

Supervised learning = modeling errors for a purpose

■Cleaning & parametric modeling are needed because we reason on model parameters

But these models are imperfect simplification of reality

Imperfection of modeling and cleaning compromise the <u>validity</u> of findings [Varoquaux 2021]

Analytics -beyond prediction- on top of supervised learning can enable easier, more valid, analysis

1 Non-normalized discrete entities / categories

Entities: more learning, rather than more cleaning Dirty categories from strings

Non-normalized categories break statistical pipelines

■Categorical-ish data

■Standard statistical practice: one-hot encoding

Breaks due to high-cardinality
Looses links between entries

Employee Position Title Master Police Officer Social Worker IV Police Officer III Police Aide Electrician I **Bus Operator Bus Operator** Social Worker III Library Assistant II Library Assistant I

Varoquaux

Traditional view: data curation & database normalization

Feature engineering

Emplo	yee Position Title		Position	Rank
Ma	ster Police Officer	-	Police Officer	Master
	Social Worker III		Social Worker	Ш
	Police Officer II	\Rightarrow	Police Officer	П
	Social Worker II		Social Worker	U
	Police Officer III		Police Officer	III

Traditional view: data curation & database normalization

Feature engineering

 Employee Position Title
 Position
 Rank

 Master Police Officer
 Police Officer
 Master

 Social Worker III
 ⇒
 Social Worker
 III

Merging entities

- Output a "clean" database
- Difficult without supervision
- Potentially suboptimal

 Pfizer Corporation Hong Kong

 Pfizer Pharmaceuticals Korea

Deduplication

Company name

Pfizer Inc. Pfizer Pharmaceuticals LLC

Pfizer International LLC

Pfizer Limited

Pfizer Corporation Hong Kong Limited
Pfizer Pharmaceuticals Korea Limited

Traditional view: data curation & database normalization

Feature engineering

Merging entities

Output a "clean" database

Deduplication

Company name

Pfizer Inc.
Pfizer Pharmaceuticals LLC

..

Hard to make automatic and turn-key Harder than supervised learning

⇒ the analytic question should guide the curation

Adding string similarity fixes statistical pipelines

On many real-life datasets

[Cerda... 2018]

- a simple string similarity boosts statistical analysis
- more than deduplication

	London	Londres	Paris
Londres	0.3	1.0	0.0
London	1.0	0.3	0.0
Paris	0.0	0.0	1.0
	ı	ı	I

string_distance(Londres, London)

Works best combined with a powerful model, such as gradient-boosted trees

Varoquaux

Modeling substrings

Drug Name

alcohol

ethyl alcohol

isopropyl alcohol

polyvinyl alcohol

isopropyl alcohol swab

62% ethyl alcohol

alcohol 68%

alcohol denat

benzyl alcohol

dehydrated alcohol

Employee Position Title

Police Aide

Master Police Officer

Mechanic Technician II

Police Officer III

Senior Architect

Senior Engineer Technician

Social Worker III

GapEncoder: Embedding via string forms

Factorizing sub-string count matrices

Models strings as a linear combination of substrings

GapEncoder: Embedding via string forms

Factorizing sub-string count matrices

Models strings as a linear combination of substrings

GapEncoder: Gamma-Poisson factorization

X is a matrix of counts

- Topic modeling

- [Canny 2004]
- String entries [Cerda and Varoquaux 2020]

⇒ Poisson loss, instead of squared loss

$$\mathbb{P}(\mathbf{x}_j|\mathbf{w}_j) = \text{Poisson}(\mathbf{w}_j) = \frac{1}{X_j!} \mathbf{w}_j^{X_j} e^{-\mathbf{w}_j}$$

Counts are not well approximated by a Gaussian

GapEncoder: Gamma-Poisson factorization

X is a matrix of counts

- Topic modeling [Canny 2004] - String entries [Cerda and Varoquaux 2020]
- ⇒ Poisson loss, instead of squared loss

$$\mathbb{P}(\mathbf{x}_{j}|\mathbf{u},\mathbf{V}) = \mathsf{Poisson}((\mathbf{u}\,\mathbf{V})_{j}) = \mathcal{I}_{X_{j}!}(\mathbf{u}\,\mathbf{V})_{j}^{x_{j}}e^{-(\mathbf{u}\,\mathbf{V})_{j}}$$

u are loadings, modeled as random with a Gamma prior
$$\mathbb{P}(u_i) = \frac{u_i^{\alpha_i - 1} e^{-u_i/\beta_i}}{\beta_i^{\alpha_i} \Gamma(\alpha_i)}$$

Maximum a posteriori estimation:

$$\hat{\mathbf{U}}, \hat{\mathbf{V}} = \underset{\mathbf{U}, \mathbf{V}}{\operatorname{argmin}} - \sum_{i} \left(\log \mathbb{P}(\mathbf{x}_{j} | \mathbf{u}, \mathbf{V}) + \sum_{i} \log \mathbb{P}(u_{i}) \right)$$

Stochastic MM optimization = robust [Cerda and Varoquaux 2020]

G Varoquaux rotational invariance

¹Because it is the conjugate prior of the Poisson, and because it imposes soft sparsity and raises

GapEncoder: String embeddings capturing latent categories

Categories

Legislative Analyst II Legislative Attorney Equipment Operator I Transit Coordinator Bus Operator Senior Architect Senior Engineer Technician Financial Programs Manager Capital Projects Manager Mechanic Technician II Master Police Officer Police Sergeant

GapEncoder: String embeddings capturing latent categories

Plausible feature names

Legislative Analyst II Legislative Attorney Equipment Operator I Transit Coordinator Bus Operator Senior Architect Senior Engineer Technician Financial Programs Manager Capital Projects Manager Mechanic Technician II Master Police Officer Police Sergeant

Keytie state of the control of the c

Representations tailored to the data

fasttext: almost as good as GapEncoder, if in the right language

Incorrect entities

Embedding discrete objects into vector spaces is crucial

Forces rethinking the analytic pipeline

(flexible models, rather than binning & averaging)

Enables to capture errors as noise

Dirty Categories: Non-normalized entities

Analysis without cleaning by representing string form to model

GapEncoder – Gamma Poisson encoder:

- Low-dimensional representation
- Interpretable: recovers latent categories

from dirty_cat import GapEncoder
enc = GapEncoder()

X = enc.fit_transform(categorical_cols)

enc = SuperVectorizer()

X = enc.fit_transform(dataframe)

Code: dirty-cat.github.io

[Cerda and Varoquaux 2020]

2 Missing values

Ubiquitous in health and social sciences

- M. Le Morvan

- E. Scornet

- J. Josse

Gender
М
F
М
F
М
М
ΛΛ.

Experience

10 yrs

23 yrs

3 yrs 16 yrs

13 yrs

6 yrs

9 yrs

8 yrs

NA

NA

M M

F

F

M

Age

42

NA

28

45

48

36

62

35

39

NA

With

2 Missing values

The classical missing-values framework Rethinking imputation for prediction Architectures for missing values **Model a)** a distribution f_{θ} for the complete data **x b)** a random process g_{ϕ} generating a mask **m**

(full likelihood)
$$\mathcal{L}_1(\theta,\phi) = \prod_{i=1}^n \int f_\theta(\mathbf{x}_{i,o},\mathbf{x}_{i,m}) \, g_\phi(\mathbf{m}_i|\mathbf{x}_{i,o},\mathbf{x}_{i,m}) \, \mathrm{d}\mathbf{x}_{i,m} \\ \text{Expectation over missing-values mechanism}$$

(ignoring missing mechanism)
$$\mathcal{L}_2(\theta) = \prod_{i=1}^n \int f_{\theta}(\mathbf{x}_{i,o}, \mathbf{x}_{i,m}) \, d\mathbf{x}_{i,m}$$

Model a) a distribution f_{θ} for the complete data **x b)** a random process g_{ϕ} generating a mask **m**

(full likelihood)
$$\mathcal{L}_1(\theta, \phi) = \prod_{i=1}^n \int f_{\theta}(\mathbf{x}_{i,o}, \mathbf{x}_{i,m}) g_{\phi}(\mathbf{m}_i | \mathbf{x}_{i,o}, \mathbf{x}_{i,m}) d\mathbf{x}_{i,m}$$

(full likelihood)
$$\mathcal{L}_1(\theta, \phi) = \prod_{i=1}^n \int f_{\theta}(\mathbf{x}_{i,o}, \mathbf{x}_{i,m}) \, g_{\phi}(\mathbf{m}_i | \mathbf{x}_{i,o}, \mathbf{x}_{i,m}) \, \mathrm{d}\mathbf{x}_{i,m} \\ \text{Expectation over missing-values mechanism}$$

$$\lim_{i=1}^{n} \int_{i}^{\infty} \int_$$

 $\mathcal{L}_{2}(\theta) = \prod_{i} \int f_{\theta}(\mathbf{x}_{i,o}, \mathbf{x}_{i,m}) \, \, \mathrm{d}\mathbf{x}_{i,m}$ (ignoring missing mechanism)

Theorem: In MAR, maximizing
$$\mathcal{L}_1$$
 and \mathcal{L}_2 give same $\hat{\theta}$
Definition: Missing at random situation (MAR)¹
observed($\mathbf{x}', \mathbf{m}_i$) = observed($\mathbf{x}_i, \mathbf{m}_i$) $\Rightarrow g_{\phi}(\mathbf{m}_i | \mathbf{x}') = g_{\phi}(\mathbf{m}_i | \mathbf{x}_i)$

 1 for non-observed values, the probability of missingness does not depend on this non-observed value

Ignorable missingness

Missing Not at Random situation (MNAR)

Missingness **not ignorable**

 $\Rightarrow \mathsf{Hard}$ must explicitly model the mechanism

MAR grounds the validity of common statistical procedures

■ Expectation Maximization

■ Imputation + plug-in estimation

Classic theory

Missing at Random central to statistical practice

MAR

MNAR

2 Missing values

The classical missing-values framework Rethinking imputation for prediction Architectures for missing values

Imputation procedures that work out of sample

Mean imputation special case of univariate imputation Replace NA by the mean of the feature

sklearn.impute.SimpleImpute

Classic statistics point of view

Mean imputation is disastrous: it disorts the distribution

"Congeniality" conditions: imputation must preserve data properties used by later analysis steps

G Varoquaux —2 0 2

Imputation procedures that work out of sample

Mean imputation special case of univariate imputation
Replace NA by the mean of the feature
sklearn.impute.SimpleImpute

Conditional imputation

- Modeling one feature as a function of others
- Possible implementation: iteratively predict one feature as a function of other
- Classic implementations in R: MICE, missforest

sklearn.impute.IterativeImputer bad computational scalability

Theorem (informal): a universally consistent learner trained on imputed data $\Phi(\widetilde{X})$ is Bayes consistent (optimal prediction) for all missing data mechanisms and almost all imputation functions

Asymptotically, imputing well is not needed to predict well.

Imputed data (manifolds)

Simple simulations

Simulation: MCAR + Gradient boosting

Varoquaux 36

Imputation is not enough: predictive missingness

Pathological case

[Josse... 2019]

y depends only on wether data is missing or not
eg tax fraud detection
theory: MNAR = "Missing Not At Random"

↑ Imputing makes prediction impossible ∧

Solution

Add a missingness indicator: extra feature to predict

...SimpleImpute(add_indicator=True)
...IterativeImputer(add_indicator=True)

Simple simulations

Simulation: Censoring MNAR + Gradient boosting

Notebook: github – @nprost / supervised_missing

Simple intutions: http://dirtydata.science/python/

Fully-observed data

6 Varoquaux

Simple intutions: http://dirtydata.science/python/

MCAR data

6 Varoquaux

Simple intutions: http://dirtydata.science/python/

MCAR data imputed

varoquaux

Simple intutions: http://dirtydata.science/python/

MNAR data imputed

varoquaux

Chaining oracles: $f^* \odot \Phi^{Cl}$, where Φ^{Cl} is the oracle imputation $\mathbb{E}[X_{mis}|X_{obs}]$ f^* optimal predictor without missing values

⇒ Not consistent

Curvature turns omitted variance into bias

1) Chaining oracles: 📭 fails

Curvature turns omitted variance into bias

2) Conditional imputation $\Phi^{CI} = \mathbb{E}[X_{mis}|X_{obs}]$:

⇒ optimal prediction function discontinuous

- 1) Chaining oracles: fails
 - Curvature turns omitted variance into bias
- 2) **Conditional imputation** $\Phi^{CI} \Rightarrow$ discontinuous regression function
- 3) **Fixing** f^* may lead to discontinuous imputations Φ

- 1) Chaining oracles: **•** fails
 - Curvature turns omitted variance into bias
- 2) **Conditional imputation** $\Phi^{Cl} \Rightarrow$ discontinuous regression function
- 3) **Fixing** f^* may lead to discontinuous imputations Φ

Rethinking imputation

- ■A good imputation is one that makes the regression easy
- ■Close to conditional imputation, but not
- ■Can work even in MNAR
- Even for interpretation: imputation imperfections propagate

[Le Morvan... 2021]

2 Missing values

The classical missing-values framework Rethinking imputation for prediction Architectures for missing values

Tree models with missing values

Varoquaux

Simple simulations

Simulation: MCAR + Gradient boosting

Varoquaux 44

Simple simulations

Simulation: Censoring MNAR + Gradient boosting

Continuous predictors with missing values: intuitions

$$Y = \beta_1^* X_1 + \beta_2^* X_2 + \beta_0^*$$

$$\operatorname{cor}(X_1, X_2) = 0.5.$$
If X_2 is missing, the coefficient of X_1 should **compensate for**
the missingness of X_2

effect of X2 lost

X1

The difficulty of supervised learning with missing values is to handle \mathbf{up} to 2^d missing data patterns

⇒ Suitable "weight sharing" across patterns

6 Varoquaux

1. Write the form of Bayes predictor in linear, Gaussian settings: linear function, with ... $\Sigma_{mis,obs}(\Sigma_{obs})^{-1}X_{obs}$... in MAR and MNAR (Gaussian self masking)

2. Make it differentiable

Difficulty: learning Σ_{obs}^{-1} , for any missing data pattern Approximate : Σ_{obs}^{-1} by unrolling a NeuMann series

NeuMiss Empirical results: approximation efficiency [Le Morvan... 2020]

NeuMiss needs less samples to approximate well (and predict well)

NeuMiss as differentiable imputation: non-linear settings

- ■Using NeuMiss as a block chained with an MLP
- Joint optimization of imputation & regression

[Le Morvan... 2021]

NeuMiss as differentiable imputation: non-linear settings

MAR

NeuMiss + MLP

MICE + MLP

MICE & mask + MLP

mean impute + MLP

mean impute & mask + MLP

Drop in R2 compared to Bayes predictor

NeuMiss as differentiable imputation: non-linear settings

[Le Morvan... 2021]

G Varoquaux

Drop in R2 compared to Bayes predictor

- ■Adding mask improves ⇒ evidence of MNAR
- ■KNN-imputer not good, MIA pretty good

[Perez-Lebel... 2022b]

■13 real-life prediction tasks

- ■Imputation comes with high cost –at least $O(np^2 \min(n, p))$
- ■KNN-imputer not good, MIA pretty good

A tangent in medical imaging

Modality-specific models

■On each modality fit a suitable model (deep-learning, linear....)

Non-linear model stacking

■ Combine the **predicted** outcome values with other variables (eg clinical) as the input of tree model

Supervised learning with missing values

Beyond parametric models

- MAR assumption no longer needed
- conditional imputation not a consistent oracle

NeuMiss networks: approximating the probabilistic model

- optimizable predictor with missing values / imputation
- more scalable than EM; robust to missingness mechanism

In practice: Real-life benchmarks: [Perez-Lebel... 2022a]

- Real databases are MNAR
- Conditional imputation not tractable

Use trees with missing incorporated attribute
scikit-learn: HistGradientBoostingRegressor

Summary – dirty-data analytics

More learning, less cleaning

- Finding a simple "cleaned" truth is hard or unrealistic
- Exposing glitches to supervised learning, not curating
- The validity of the outcome ensures that of the analysis

Leads to new statistical tradeoffs

- Finding latent fuzzy -continuous categories
- Missing values analysis valid without MAR / correct imputation

Soda research group: Positions available

https://team.inria.fr/soda/

References I

- J. Canny. Gap: A factor model for discrete data. In SIGIR, page 122, 2004.
- P. Cerda and G. Varoquaux. Encoding high-cardinality string categorical variables. Transactions in Knowledge and Data Engineering, 2020.
- P. Cerda, G. Varoquaux, and B. Kégl. Similarity encoding for learning with dirty categorical variables. *Machine Learning*, pages 1–18, 2018.
- A. Cvetkov-Iliev, A. Allauzen, and G. Varoquaux. Analytics on non-normalized data sources: more learning, rather than more cleaning. *IEEE Access*, 2022.
- D. A. Engemann, O. Kozynets, D. Sabbagh, G. Lemaître, G. Varoquaux, F. Liem, and A. Gramfort. Combining magnetoencephalography with magnetic resonance imaging enhances learning of surrogate-biomarkers. *eLife*, 9:e54055, 2020.
- L. Grinsztajn, E. Oyallon, and G. Varoquaux. Why do tree-based models still outperform deep learning on tabular data? *arXiv:2207.08815*, 2022.
- J. Josse, N. Prost, E. Scornet, and G. Varoquaux. On the consistency of supervised learning with missing values. *arXiv* preprint arXiv:1902.06931, 2019.

References II

- M. Le Morvan, J. Josse, T. Moreau, E. Scornet, and G. Varoquaux. Neumiss networks: differential programming for supervised learning with missing values. In *Advances in Neural Information Processing Systems* 33, 2020.
- M. Le Morvan, J. Josse, E. Scornet, and G. Varoquaux. What's a good imputation to predict with missing values? *NeurIPS*, 2021.
- A. Perez-Lebel, G. Varoquaux, M. Le Morvan, J. Josse, and J.-B. Poline. Benchmarking missing-values approaches for predictive models on health databases. *GigaScience*, 2022a.
- A. Perez-Lebel, G. Varoquaux, M. Le Morvan, J. Josse, and J.-B. Poline. Benchmarking missing-values approaches for predictive models on health databases. *GigaScience*, 11, 2022b.
- D. B. Rubin. Inference and missing data. Biometrika, 63(3):581-592, 1976.
- G. Varoquaux. Ai as statistical methods for imperfect theories. In NeurIPS 2021-35th Conference on Neural Information Processing Systems. Workshop: AI for Science, 2021.